Rayleigh-Taylor instability, lithospheric dynamics, surface topography at convergent mountain belts, and gravity anomalies

نویسندگان

  • Peter Molnar
  • Gregory A. Houseman
چکیده

[1] Surface topography and associated gravity anomalies above a layer resembling continental lithosphere, whose mantle part is gravitationally unstable, depend strongly on the ratio of viscosities of the lower-density crustal part to that of the mantle part. For linear stability analysis, growth rates of Rayleigh-Taylor instabilities depend largely on the wave number, or wavelength, of the perturbation to the base of the lithosphere and weakly on this viscosity ratio, on plausible density differences among crust, mantle lithosphere, and asthenosphere, and on ratios of crustal to total lithospheric thicknesses. For all likely densities, viscosities, and thicknesses, the Moho is drawn down (pushed up) where the base of the lithosphere subsides (rises). For large viscosities of crust compared to mantle lithosphere (ratios> ~30), a sinking and thickening mantle lithosphere also pulls the surface down. For smaller viscosity ratios, crustal thickening overwhelms the descent of the Moho, and the surface rises (subsides) above regions where mantle lithosphere thickens and descends (thins and rises). Ignoring vertical variations of viscosity within the crust and mantle lithosphere, we find that the maximum surface height occurs for approximately equal viscosities of crust and mantle lithosphere. For large crust/mantle lithosphere viscosity ratios, gravity anomalies follow those of surface topography, with negative (positive) free-air anomalies over regions of descent (ascent). In this case, topography anomalies are smaller than those that would occur if the lithosphere were in isostatic equilibrium. Hence, flow-induced stresses—dynamic pressure and deviatoric stress—create smaller topography than that expected for an isostatic state. For small crust/mantle viscosity ratios (< ~10), however, calculated surface topography at long wavelengths is greater than it would be if the lithospheric column were in isostatic equilibrium, and at short wavelengths local isostasy predicts surface deflections of the wrong sign. For the range of wavelengths appropriate for convergent mountain belts (~150–600 km), calculated gravity anomalies are negative over regions of lithospheric thickening, especially when allowance for flexural rigidity of a surface layer is included. Correspondingly, calculated values of admittance, the ratio of Fourier transforms of surface topography and free-air gravity anomalies, are also negative for wave numbers relevant to mountain belts. For essentially all mountain belts, however, measured free-air anomalies and admittance are positive. Whether gravitational instability of the lithosphere affects the structure of convergent belts or not, its contribution to the topography of mountain belts seems to be small compared to that predicted for isostatic balance of crustal thickness variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of Continental Lithosphere: Studies in the Ural Mountains, the Adriatic Region, and the Western United States

Geophysical and geological observations from the Ural Mountains have been compiled to test whether the surficial similarities of the Appalachian and Ural orogenic belts extend to include deep lithospheric structure and compensation mechanism. The combined data suggest support of the mountains by a stiff continental slab which is depressed by an effective subcrustal load in addition to the topog...

متن کامل

Effects of elasticity on the Rayleigh–Taylor instability: implications for large-scale geodynamics

S U M M A R Y Although parts of the lithosphere may be expected to behave elastically over certain timescales, this effect is commonly ignored in models of large-scale mantle dynamics. Recently it has been demonstrated that elasticity, and in particular viscoelasticity, may have a significant effect on the buckling instability and on the creation of lithospheric-scale shearzones. It is, however...

متن کامل

Rayleigh–Taylor instability in cylindrical geometry with compressible fluids

A linear stability analysis of the Rayleigh–Taylor instability RTI between two ideal inviscid immiscible compressible fluids in cylindrical geometry is performed. Three-dimensional 3D cylindrical as well as two-dimensional 2D axisymmetric and circular unperturbed interfaces are considered and compared to the Cartesian cases with planar interface. Focuses are on the effects of compressibility, g...

متن کامل

Uplift, Shortening, and Steady State Topography in Active Mountain Belts

We present a tectonic, surface process model used to investigate the role of horizontal shortening in convergent orogens and the effects on steady-state topography. The tectonic model consists of a specified velocity field for the Earth’s surface and includes a constant uplift rate and a constant horizontal strain rate which varies to reflect the relative importance of frontal accretion and und...

متن کامل

The compressible viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability

This paper concerns the dynamics of two layers of compressible, barotropic, viscous fluid lying atop one another. The lower fluid is bounded below by a rigid bottom, and the upper fluid is bounded above by a trivial fluid of constant pressure. This is a free boundary problem: the interfaces between the fluids and above the upper fluid are free to move. The fluids are acted on by gravity in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013